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Thermal interaction of parallel gas lines with a nonadiabatic real gas flow is investigated. The Poincarg 
method is applied to yield solutions useful for engineering design purposes. 

When underground gas lines are located close together, their temperature fields interact, which undoubtedly af- 
fects the thermal and hydraulic conditions. A quantitative evaluation of this effect is of interest in connection with the 
design and operation of multiple gas lines. An analogous problem relating to the pumping of '~ot" oils was examined in 
[i]. 

The present paper examines the thermal interaction of two parallel gas ducts with a nonadiabatic real gas flow on 
the basis of the general equations of gas dynamics (continuity, momentum, and energy) [1, 2]: 
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The equation of state is assumed to be [3]: 

(Pnv~)/(RTn) = 1 + 128 P~ ~ 1--6 T~ ] = Zo(Pn, T~), Ob) 

which gives good results in the supercritical temperature region at moderate pressures (0-100) �9 105 N/m s. Neglecting 
variations of velocity head and geometric height [2] in (la) and taking into account the known thermodynamic relation 
for enthalpy, we obtain: 
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The subscript 1 relates to the hotter gas l ine.  We shall seek a solution of  (2) by the Poincar4 method [4]. For real gases the 

parameter  e is very small  (of the order of  10-~). The distributions of  temperature  ~o n and pressure ~n along the length of  
the line for a perfect gas with s = 0 are obtained from solving (2): 
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The Poincard solution of  system (2) [4] is sought in the form of  l inear  combina t ions  
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Omit t ing  the i n t e rmed ia t e  steps, we give  the equat ion for correct ing tempera ture  and pressure to take account  of 

the differences between a real and a perfect gas: 
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The integrations in (5) can be performed numer ica l ly  with the requisite degree of  accuracy.  Let us examine  the 
gas temperature distribution along the interact ing gas lines in terms of the solutions obtained.  

The following cases are of prac t ica l  interest: 

1. r l i  = r2l = r0; ~rli = ~ i  = ~ri. Expressing the integrals in Eqs. (5) in terms of the Cramp function [5] 
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and neglect ing corrections for the pressure variat ion due to the gas being thermodynamica l ly  imperfec t  and due to ther-  
ma l  interact ion (because of  their  smallness), we may  represent the temperature distribution along the interact ing gas 
lines in the form: 
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2. The inequal i t ies  lrf i  - r01 << 1, Irzi - r 0 f << 1, r 0 > 1 usually hold, and >re may  therefore use (7) even for 

r n  i ~e ro" 

The heat  losses of  para l le l  interact ing gas lines depend, amongst other factors, on the distance l between them 
and the thermal  conductivity of  the ground kg r. The hea t  losses of  isolated and interact ing gas lines are re la ted as fol-  
lows [I]: 

~ l = ( 1 - - 0 t n ~  / lq-(~h)2 / ln4h'~ 
- -  / D2 ] >( (8) 
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The effect of  thermal  interact ion of gas lines of  d iameter  I000 and 700 m m  for h = I. 2 m is shown in Fig. I.  It 
follows from an analysis of (8) and from Fig. 1, that  as I decreases (kg r = const) the losses of  the hotter l ine ~I decrease 

f and reach a min imum when 

determined from the condit ion dS1/dI = 0. Then 8 2 = 0.5,  i . e . ,  the 
hea t  losses of the colder l ine due to interact ion are ha l f  those of  an 
isolated duct at temperature r z. 

I,0 When l < l x, ~i increases, and reaches a maximum when ~min = 

= (D I + DZ)/2; g z then decreases and at a distance 

F" = - -  1 (1o) 

aS 

becomes equal to zero, i .  e . ,  locat ing the colder l ine  at  distance 10 
does not affect the heat  losses of  the hotter line, which are then equal 
to those of an isolated duct at temperature r l .  This may occur i f  the 
colder l ine coincides with an isotherm of  the hotter l ine at temperature  

9 5 I0 l r z [1], When l < l 0, 82 becomes negative,  i . e . ,  the colder l ine is heat- 
Fig. 1. Thermal  interact ion of two gas lines ed due to losses from the hotter  one. When l < 20 m (Xg r up to 2.8 

(h = 1 .2  m): I and II) dimensionless hea t  loss- k J /m � 9  degree), there is no thermal  interaction,  and the hea t  loss- 
es of  hotter l ine ( D  1 = 1000 ram) and of  co ld-  es of  the system 80 = 81 + ~2 tend to a maximum.  
er l ine (D2 = 700 mm); IID total  heat  losses 

To obtain a quanti tat ive evaluat ion of  the effect of thermal  in-  
(/30 = 81 + 8~); 1) 0 = O. 2; 2) 0.4; 3) 0.6; 
4) 1. 0; teract ion on the temperature  distribution along para l le l  gas lines with 

a nonadiabat ic  real  gas flow (methane) ,  calculat ions were performed 
for the following conditions: Pi = 53.9 �9 l0 s N/m2; G 1 = 9.0 �9 l0  s k g / ~ ;  Gz = 3.25 �9 10 ~ kg /h r ;  D 1 = i .  0 m; D= = 0.7 m; 

L = 120 kin; h ,  = h~ = 1. 2 m; Xl = 0. 010; k~. = 0. 013; Pc = 44. 9 �9 105 N/mZ; T c = 190.5*K; Cp = 2.919 k j / k g  �9 degree; 

R = 53 m/degree ;  Z0h = 0.93. 

Variat ion of  the real  gas temperature  along the interact ing gas lines, was ca lcula ted  from (7) for various values of  

k _ ,  distances between duct axes l, and in i t ia l  gas temperatures rf i ,  r~ i (Figs. 2, 3). For comparison, the temperature  8r 
distribution of  a thermodynamica l ly  perfect gas in interact ing gas lines was ca lcula ted  from (3) and from the 8hukov 
formulas and from [6] for a perfect  and the corresponding real gas without taking account of thermal  interaction.  

An analysis of the cases most important  in pract ice  shows that: 

1. When l < I 0 (vii = rA)  the temperature  curve (curve 4) of  the hotter gas l ine for a real  gas with a l lowance for 
thermal  interaction,  passes below the curves for a perfect and a real  gas 1 and 3. This is explained by addit ion of  the 
interact ion effects (81 > 1) and by departure from perfect thermodynamic  conditions (Fig.  2). The temperature  curve 
of the colder l ine for a rea l  gas (8) consists of  two parts - one (to the point of  inflect ion) corresponding to heat ing and 
the other (after that) to cooling; curve 8 passes below 7 for a perfect gas with interact ion,  and above curve 5. The la t ter  
observation is explained by the opposing action of  the Joule-Thomson and interact ion effects: heat ing of the gas due to 
thermal  interact ion (B2 < 0) and cooling due to thermodynamic  imperfect ion.  It may be seen from Fig. 2 that in this 
region ( l  < 10) increase in tempera ture  due to interact ion predominates over the Joule-Thomson effect,  and the t empera -  

ture of the real  gas remains considerably higher than that of a perfect gas in the absence of interaction.  

314 



2. When l x > l > l o (vli = r~i) the 

t.6 

~5 

02 0.4 0.6 0.8 x 

Fig. 2. Dependence of dimensionless 
temperature of the gas, 7, on x for 

k = 0.913, l = 0 ,  g m :  1, 2, 3 , 4 a n d  gr 
5, 6, 7, 8) according to Shukov's for- 
mulas [6], (3), and (7) for D 1 = 1000 

m m  and D 2 = 700 mm, respectively; 
9) dimensionless ground temperature. 

temperature curve 4 passes below curve 2 due to predominance of the Joule- 

Thomson effect over heating of the gas due to interaction (Fig. 3a). 

S. When l x > l > l 0 (r l i  > Tzi) the temperature curve of the colder l ine 

for a real gas (8) is higher than that for a perfect gas in the absence of interac-  

tion (5), which is explained by the predominance of heating due to interaction 

over cooling due to the Joule-Thomson effect (Fig. 3b); with increase of kg r, 

the effect of interaction on the thermal conditions decreases. 

Thus, for maximum uti l ization of the carrying capacity of the hotter gas 

l ine and improved thermal conditions in the colder one (avoidance of hydrate 

formation, etc. ), the distance between them should be within the range t x > 

> l > l 0 for the corresponding value of | When this spacing is impossible for 

safety reasons, l should be chosen in the range 10-12 m (Fig. 1). An analysis 
of the derived formulas and the calculated data (Fig. 2) indicates that thermal 

interaction of parallel gas lines produces a considerable change in the thermal 

conditions in each of them. This should be taken into account in cases when it  
is important to know the temperature of a real piped gas (condensation of hy- 

drocarbons and water, hydrate formation, choice of insulation, e tc . ) .  

Thermal  interaction can be put to good use, for instance, to provide 

partial cooling of the gas in the pipe itself. 

NOTATION 

T1,  T 2 - outer surface temperatures of gas lines; T O - temperature of 

surrounding ground (under normal thermal conditions); h l, h 2 - depths of lines below ground (to axes); l - distance be-  
tween axes; D1, D~ - outsider diameters of gas lines; Xg r - thermal conductivity of ground; G - mass flow rate; f - cross- 

sectional area of gas lines; L - length of line; P - absolute pressure; k - friction coefficient; v - specific volume; Z 0 - 

compressibility factor; R - gas constant; Pc, Tc - respectively, cri t ical  pressure and temperature; Cp - specific heat at 
constant pressure; i - enthalpy; H - loss of heat due to friction; w - gas velocity; U - internal  energy; A - thermal 

equivalent of mechanica l  work; g - acceleration due to gravity. 
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Fig. 3. Dependence Of gas temperature r on ~ for r l i  = rzi (a), vii  > 

> r2i (b), kg r = 0. 913, l = 2 m: 1-9 see Fig. 2. 
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