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Thermal interaction of parallel gas lines with a nonadiabatic real gas flow is investigated. The Poincaré
method is applied to yield solutions useful for engineering design purposes. '

When underground gas lines are located close together, their temperature fields interact, which undoubtedly af-
fects the thermal and hydraulic conditions. A quantitative evaluation of this effect is of interest in connection with the
design and operation of multiple gas lines. An analogous problem relating to the pumping of "hot" oils was examined in
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The present paper examines the thermal interaction of two parallel gas ducts with a nonadiabatic real gas flow on
the basis of the general equations of gas dynamics (continuity, momentum, and energy) {1, 2]:
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The equation of state is assumed to be [3]:
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which gives good results in the supercritical temperature region at moderate pressures (0-100) - 10° N/m?. Neglecting
variations of velocity head and geometric height [2] in (1a) and taking into account the known thermodynamic relation

for enthalpy, we obtain:
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The subscript 1relates to thehotter gasline. We shallseek a solution of (2) by the Poincaré method [4]. For real gases the
parameter € is very small (of the order of 10°%), The distributions of temperature ¢, and pressure ¥, along the length of
the line for a perfect gas with & = 0 are obtained from solving (2):
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The Poincaré solution of system (2) [4] is sought in the form of linear combinations
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Omitting the intermediate steps, we give the equation for correcung temperature and pressure to take account of

the differences between a real and a perfect gas:

%

—w _ (@ + Ky) exp (Ky %) [b j‘ K ( 18 ) dx
1 > Py ] — — ) —
b2 (K1 —K3) b1 @} ) exp(Kix)

.+ K ‘P2<1 - ﬁ)__di__] )
(a + 2) J LI)2 ) q)g exp (sz) +

n (a; 4+ K,) exp (Kq %) [(a2+K1)P2 X&(l N E)L——
0

bs (Ky — K3) 2 ?5 ) exp(Kzx)

—bapy | B[] — —18—> L J

] j %( 7 ) expen) |’

T _€Xp (Kﬂ)[ f ( ) dx

{ _—— )
K, (P1 exp(Klu)

d
o ) exp(Kpx) ] i

J,E_Iz_(@)_{ y 92 (1 18, dx
K1*Kz (a +K1)}’4 ‘Pz (P2 ) exp(sz)

. 18 dx
—b B 2 Q0 I o
2 (.5 U ( %} ) EXP(sz)]

—(az + K2) }"25‘

312



} : L
T = b, €XD (uj b dx)[— :) exp (-~ unj flf— d—/.) d] 5)
g Y n § n 3 n

The integrations in (5) can be performed numerically with the requisite degree of accuracy. Let us examine the
gas temperature distribution along the interacting gas lines in terms of the solutions obtained.

The following cases are of practical interest:
L 7y =Tl =Tg Tyi =Ty = 7. Expressing the integrals in Eqs. (5) in terms of the Cramp function [5]
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and neglecting corrections for the pressure variation due to the gas being thermodynamically imperfect and due to ther-
mal interaction (because of their smallness), we may represent the temperature distribution along the interacting gas
lines in the form:
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2. The inequalities |ty — 7y < 1, |ty —Ty| < 1, 7y > 1 usually hold, and we may therefore use (7) even for

Tni # Tg.

The heat losses of parallel interacting gas lines depend, amongst other factors, on the distance ! between them
and the thermal conductivity of the ground kgr' The heat losses of isolated and interacting gas lines are related as fol-
lows [1}
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The effect of thermal interaction of gas lines of diameter 1000 and 700 mm for h = 1, 2 m is shown in Fig, 1. It
follows from an analysis of (8) and from Fig. 1, that as I decreases (A ¢ = const) the losses of the hotter line B; decrease
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Fig. 1. Thermal interaction of two gas lines
(h= 1.2 m): I and II) dimensionless heat loss-
es of hotter line (Dy = 1000 mm) and of cold-
er line (D, = 700 mm); III) total heat losses.
(Bp=8;y+By) 1)0=10,2; 2) 0.4; 3) 0. 6;

4) 1. 0;

and reach a minimurn when
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determined from the condition dB8,/dl = 0, Then 8, = 0.5, i.e,, the
heat losses of the colder line due to interaction are half those of an
isolated duct at temperature 7.

When 1< I, Byincreases, and reaches 2 maximum when Iy =
= (Dy + Dy)/2; B, then decreases and at a distance

2 —1/2
a2 {(5) ]
, Dy

becomes equal to zero, i.e., locating the colder line at distance I,
does not affect the heat losses of the hotter line, which are then equal
to those of an isolated duct at temperature T9. This may occur if the
colder line coincides with an isotherm of the hotter line at temperature
Tg [1]. When [ < 1y, B, becomes negative, i.e., the colder line is heat-
ed due to losses from the hotter one, When I < 20m ( xgr up to 2.8
kJ/m - sec degree), there is no thermal interaction, and the heat loss-
es of the system By = By + B, tend to a maximum.
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To obtain a quantitative evaluation of the effect of thermal in-
teraction on the temperature distribution along paralilel gas lines with
a nonadiabatic real gas flow (methane), calculations were performed

for the following conditions: P; = 53.9 * 10°N/m?% Gy = 9.0 - 10°kg/hr; G = 3. 25 * 10°kg/hr; Dy = 1.0 m; Dy = 0,7 m;
L=120km; hy=hy=1.2m; Ay = 0,010; Ay = 0. 013; P, =44.9 + 10° N/m?; T, =190.5°%; C, = 2.219 kj/kg - degree;

R = 53 m/degree; Zgp =0.93. .

Variation of the real gas temperature along the interacting gas lines, was calculated from (7) for various values of

A

1!

distances between duct axes I, and initial gas temperatures r,4, 75 (Figs. 2, 3). For comparison, the temperature

distribution of a thermodynamically perfect gas in interacting gas lines was calculated from (3) and from the Shukov
formulas and from [6] for a perfect and the corresponding real gas without taking account of thermal interaction.

An analysis of the cases most important in practice shows that:

1. When I <y (T3 = Tgi) the temperature curve (curve 4) of the hotter gas line for a real gas with allowance for
thermal interaction, passes below the curves for a perfect and a real gas 1 and 3. This is explained by addition of the
interaction effects (8; > 1) and by departure from perfect thermodynamic conditions (Fig, 2). The temperature curve
of the colder line for a real gas (8) consists of two parts — one (to the point of inflection) corresponding to heating and
the other (after that) to cooling; curve 8 passes below 7 for a perfect gas with interaction, and above curve 5. The latter
observation is explained by the opposing action of the Joule-Thomson and interaction effects: heating of the gas due to
thermal interaction (8, < 0) and cooling due to thermodynamic imperfection, It may be seen from Fig. 2 that in this
region (1 < l) increase in temperature due to interaction predominates over the Joule-Thomson effect, and the tempera-
ture of the real gas remains considerably higher than that of a perfect gas in the absence of interaction.
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2. When 1y > 1> 1, (T3 = T3i) the temperature curve 4 passes below curve 2 due to predominance of the Joule-
Thomson effect over heating of the gas due to interaction (Fig. 3a).

T P 3. Whenl >1>1l; (Tyj >T7y) the temperature curve of the colder line
/ '\ ~ o for a real gas (8) is higher than that for a perfect gas in the absence of interac-
\\ ~ - y tion (5), which is explained by the predominance of heating due to interaction

% L N over cooling due to the Joule-Thomson effect (Fig. 3b); with increase of Agrs

N N 8 the effect of interaction on the thermal conditions decreases.

\\\ L\&\\:: - /{} Thus, for maximum utilization of the carrying capacity of the hotter gas

\\ ~ SRR A A line and improved thermal conditions in the colder one (avoidance of hydrate

15 S =35 — formation, etc.), the distance between them should be within the range I, >

9 =~ — > 1> {, for the cormesponding value of ©. When this spacing is impossible for

\\ safety reasons, I should be chosen in the range 10-12 m (Fig. 1). An analysis
of the derived formulas and the calculated data (Fig. 2) indicates that thermal
14 interaction of parallel gas lines produces a considerable change in the thermal

a2 17 06 a8 n o . . - ] ;
conditions in each of them. This should be taken into account in cases when it

Fig. 2. Dependence of dimensionless is important to know the temperature of a real piped gas (condensation of hy-
temperature of the gas, 7, on % for drocarbons and water, hydrate formation, choice of insulation, etc.).

Agp

=0,913, I1=0.9m: 1, 2, 3, 4 and
5, 6, 7, 8) according to Shukov's for-
mulas [6], (3), and (7) for Dy = 1000

Thermal interaction can be put to good use, for instance, to provide
partial cooling of the gas in the pipe itself,

mm and Dy = 700 mm, respectively; NOTATION

9) dimensionless ground temperature,

Ty Ty — outer surface temperatures of gas lines; T, — temperature of

surrounding ground (under normal thermal conditions); hy, hy — depths of lines below ground (to axes); ! — distance be-
tween axes; Dy, D, — outsider diameters of gaslines; Agr— thermal conductivity ofground; G — mass flowrate; f ~ cross-
sectional area of gas lines; L — length of line; P — absolute pressure; A — friction coefficient; v — specific volume; Z; —
compressibility factor; R — gas constant; P,, T, — respectively, critical pressure and temperature; Cp ~ specific heat at
constant pressure; i — enthalpy; H — loss of heat due to friction; w — gas velocity; U — internal energy; A — thermal
equivalent of mechanical work; g — acceleration due to gravity.
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Fig. 3. Dependence of gas temperature 7 on % for Tyj = Ty (8), T1i >
> Ty (b), Agr= 0,918, I = 2 m: 1-9 see Fig. 2.
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